Optimizing the Allocation of Trials to Sub-Regions in Crop Variety Testing

Maryna Prus

cont. as joint work with L. Filová, H.-P. Piepho and W. Malik

September 11, 2025

XII Working Seminar on Statistical Methods in Variety Testing

Contents

- Introduction
- 2 Model Specification
- Optimal Allocation of Trials
- 4 Example

The Experiment

- P sub-regions
- J locations:
 - J_i locations in sub-region i

•
$$J = \sum_{i=1}^{P} J_i$$

- L blocks in each location
- K genotypes in each block
- H years, typically H=3

To optimize: J_1, \ldots, J_P

Overview

- One year experiment, genotype effects uncorrelated
 - → P. & Piepho (2021)
- Multi-annual experiment, genotype effects uncorrelated
 - \rightarrow P. & Piepho (2024)
- One year experiment, genotype effects correlated
 - \rightarrow P. (2025)
- One year experiment, genotype effects correlated, large number of genotypes
 - \rightarrow Bodnar & P. (2026)

Here: *Multi-annual* experiment, genotype effects correlated, large number of genotypes

$$Y_{ijhkl} = \mu_i + \eta_h + \lambda_{ij} + \beta_{ih} + \alpha_{ik} + \omega_{hk} + \delta_{ijh} + \gamma_{ijk} + \tau_{ihk} + \phi_{ijhk} + b_{ijhl} + \varepsilon_{ijhkl}$$

- $i = 1, \dots P$, P number of sub-regions
- ullet $j=1,\ldots,J_i$, J_i number of locations in i-th sub-region
 - $J = \sum_{i=1}^{P} J_i$ total number of locations
- I = 1, ..., L, L number of blocks in each location
- k = 1, ..., K, K number of genotypes in each block
- h = 1, ..., H, H number of years

$$Y_{ijhkl} = \mu_i + \eta_h + \lambda_{ij} + \beta_{ih} + \alpha_{ik} + \omega_{hk} + \delta_{ijh} + \gamma_{ijk} + \tau_{ihk} + \phi_{ijhk} + b_{ijhl} + \varepsilon_{ijhkl}$$

- μ_i mean (fixed) effect of *i*-th sub-region
- η_h effect of h-th year, $\mathrm{var}(\eta_h) = \sigma_\eta^2$
- λ_{ij} effect of j-th location within i-th sub-region, $\mathrm{var}(\lambda_{ij}) = \sigma_\lambda^2$
- β_{ih} effect of *i*-th sub-region in *h*-th year, $\mathrm{var}(\beta_{ih}) = \sigma_{\beta}^2$
- α_{ik} effect of genotype k in sub-region i, $\operatorname{Cov}(\alpha) = \mathbf{U}, \ \alpha = (\alpha_1^\top, \dots, \alpha_K^\top)^\top, \ \alpha_k = (\alpha_{1k}, \dots, \alpha_{Pk})^\top$ Often $\mathbf{U} = \mathbf{N} \otimes \mathbf{V}$

$$Y_{ijhkl} = \mu_i + \eta_h + \lambda_{ij} + \beta_{ih} + \alpha_{ik} + \omega_{hk} + \delta_{ijh} + \gamma_{ijk} + \tau_{ihk} + \phi_{ijhk} + b_{ijhl} + \varepsilon_{ijhkl}$$

- ω_{kh} effect of genotype k in h-th year, $\mathrm{var}(\omega_{kh}) = \sigma_{\omega}^2$
- δ_{ijh} effect of location j within sub-region i in h-th year, $var(\delta_{ijh}) = \sigma_{\delta}^2$
- γ_{ijk} effect of genotype k in location j within sub-region i, $var(\gamma_{ijk}) = \sigma_{\gamma}^2$
- τ_{ikh} effect of genotype k within sub-region i in h-th year, $var(\tau_{ikh}) = \sigma_{\tau}^2$
- ϕ_{ijhk} effect of genotype k in location j in h-th year, $\mathrm{var}(\phi_{ijhk}) = \sigma_\phi^2$

$$Y_{ijhkl} = \mu_i + \eta_h + \lambda_{ij} + \beta_{ih} + \alpha_{ik} + \omega_{hk} + \delta_{ijh} + \gamma_{ijk} + \tau_{ihk} + \phi_{ijhk} + b_{ijhl} + \varepsilon_{ijhkl}$$

- b_{ijhl} effect of block l in location j in h-th year, $\mathrm{var}(b_{ijhl}) = \sigma_b^2$
- ε_{ijhkl} observational error, $var(\varepsilon_{ijhkl}) = \sigma^2$
- All random effects and observational errors are uncorrelated and have zero mean

LMM here: Cross-classification - same locations each year

Often used: Nested model - locations nested within year \rightarrow particular case, without λ_{ij} and γ_{ijk}

Optimization Problem

Search for optimal numbers of locations J_1, \ldots, J_P for

prediction of genotype effects

$$lpha_1,\ldots,lpha_K$$

prediction of pairwise linear contrasts

$$\theta^{k,k'} = \alpha_k - \alpha_{k'}, \quad k \neq k'$$

for all pairs of genotypes

for given total number of locations J

Mean Squared Error (MSE) Matrix

MSE matrix for BLUP $\hat{\alpha}$ of genotype effects:

$$\operatorname{Cov}(\hat{\boldsymbol{\alpha}} - \boldsymbol{\alpha}) = \left\{ \frac{1}{c} (\mathbf{I}_{K} - \frac{1}{K} \mathbf{1}_{K}^{\top}) \otimes [(\mathbf{F}^{\top} \mathbf{F})^{-1} + \mathbf{R}]^{-1} + \mathbf{U}^{-1} \right\}^{-1}$$

$$\mathbf{F} = \operatorname{block-diag}(\mathbf{1}_{J_{1}}, \dots, \mathbf{1}_{J_{P}})$$

$$c = \sigma_{\gamma}^{2} + \frac{1}{H} \left(\sigma_{\phi}^{2} + \frac{1}{L} \sigma^{2} \right)$$

$$\mathbf{R} = \frac{\sigma_{\gamma}^{2}}{cH} \mathbf{I}_{P} + \frac{\sigma_{\omega}^{2}}{cH} \mathbf{1}_{P} \mathbf{1}_{P}^{\top}$$

Experimental Design

Exact design:

$$\xi := \left(\begin{array}{ccc} x_1 & \dots & x_P \\ J_1 & \dots & J_P \end{array}\right)$$

 $x_1, ..., x_P$ - sub-regions

Approximate design:

$$\xi := \left(egin{array}{ccc} x_1 & \dots & x_P \\ w_1 & \dots & w_P \end{array}
ight), \quad w_i = J_i/J$$

$$\sum_{i=1}^{P} w_i = 1 \qquad \& \qquad w_i \geq 0$$

Experimental Design

Moment matrix:

$$\mathbf{M}(\xi) = \operatorname{diag}(w_1, \dots, w_P)$$

For exact designs

$$\mathsf{M}(\xi) = \frac{1}{J} \mathsf{F}^{\top} \mathsf{F}, \quad \mathsf{F} = \mathrm{block\text{-}diag}(\mathbf{1}_{J_1}, \dots, \mathbf{1}_{J_P})$$

Search for optimal weights w_i* to minimize

MSE matrix of $\hat{\alpha}$ or $\hat{\theta}$

A-Criterion for Genotype Effects

A-criterion for prediction of genotype effects lpha

$$\begin{split} \Phi_{\mathcal{A}} &= \operatorname{tr} \left(\operatorname{Cov} (\hat{\boldsymbol{\alpha}} - \boldsymbol{\alpha}) \right) \\ \Phi_{\mathcal{A}}(\xi) &= const + \frac{c}{J} \operatorname{tr} \left[\left(I_{\mathcal{K}} \otimes \mathsf{M}(\xi) + \mathsf{B} \right)^{-1} \mathsf{H} \right] \\ \mathsf{B} &= \left[I_{\mathcal{K}} \otimes \tilde{\mathsf{R}} + (\mathsf{T} \otimes \mathsf{I}_{\mathcal{P}}) \tilde{\mathsf{U}} \left(\mathsf{T} \otimes \mathsf{I}_{\mathcal{P}} \right) \right]^{-1} \quad \& \quad \mathsf{H} = \mathsf{B} \left(\mathsf{T} \otimes \mathsf{I}_{\mathcal{P}} \right) \tilde{\mathsf{U}}^2 (\mathsf{T} \otimes \mathsf{I}_{\mathcal{P}}) \mathsf{B} \\ \mathsf{T} &= \mathsf{I}_{\mathcal{K}} - \frac{1}{\mathcal{K}} \mathbf{1}_{\mathcal{K}} \mathbf{1}_{\mathcal{K}}^{\top} \quad \& \quad \tilde{\mathsf{U}} = J/c \, \mathsf{U} \quad \& \quad \tilde{\mathsf{R}} = J \, \mathsf{R} \end{split}$$

K-Bayesian linear criterion but! H singular

Computational method proposed in P. (2025) cannot be directly used

A-Criterion for Pairwise Linear Contrasts

A-criterion for prediction of pairwise linear contrasts

$$\begin{split} \Phi_{A} &= \operatorname{tr} \left(\operatorname{Cov} (\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}) \right) \\ \Phi_{A}(\xi) &= const + \frac{c}{J} \operatorname{tr} \left[\left(I_{K} \otimes \mathsf{M}(\xi) + \mathsf{B} \right)^{-1} \tilde{\mathsf{H}} \right] \\ \mathsf{B} &= \left[I_{K} \otimes \tilde{\mathsf{R}} + (\mathsf{T} \otimes \mathsf{I}_{P}) \tilde{\mathsf{U}} (\mathsf{T} \otimes \mathsf{I}_{P}) \right]^{-1} \quad \& \quad \tilde{\mathsf{H}} = \mathsf{B} \left(\mathsf{T} \otimes \mathsf{I}_{P} \right) \tilde{\mathsf{U}} (\mathsf{T} \otimes \mathsf{I}_{P}) \tilde{\mathsf{U}} (\mathsf{T} \otimes \mathsf{I}_{P}) \mathsf{B} \\ \mathsf{T} &= \mathsf{I}_{K} - \frac{1}{K} \mathbf{1}_{K} \mathbf{1}_{K}^{\top} \quad \& \quad \tilde{\mathsf{U}} = J/c \, \mathsf{U} \quad \& \quad \tilde{\mathsf{R}} = J \, \mathsf{R} \end{split}$$

- ightarrow $ilde{ t H}$ singular
- → Computational method has to be extended

Example (Kleinknecht et al. (2013))

$$P = 5$$
 sub-regions, $H = 3$ years, $J = 20$ locations

Variances:

$$\sigma_\omega^2=31\quad \&\quad \sigma_\tau^2=18\quad \&\quad \sigma_\gamma^2=160\quad \&\quad \sigma_\phi^2+\tfrac{1}{L}\sigma^2=333$$

Covariance matrix of genotype effects: $\mathbf{U} = \mathbf{N} \otimes \mathbf{V}$, \mathbf{N} is AR(1)

$$\mathbf{N} = (\mathbf{N}_{ij})_{i,j=1,...,K}$$
 & $\mathbf{N}_{ij} = \rho^{|i-j|}$

$$\textbf{V} = \left(\begin{array}{ccccc} 567 & 254 & 239 & 485 & 328 \\ 254 & 155 & 118 & 240 & 162 \\ 239 & 118 & 155 & 226 & 153 \\ 485 & 240 & 226 & 488 & 310 \\ 328 & 162 & 153 & 310 & 215 \\ \end{array} \right)$$

Optimal Designs for A-Criterion for Genotype Effects

Optimal numbers of locations per sub-region

ρ	Н	K	Approximate design ξ_a^*					Exact design ξ_e^*				
			w ₁	W ₂	W ₃	W4	W ₅	J_1	J_2	J ₃	J_4	J_5
1/3	2	5	0.42	0.05	0.09	0.39	0.05	8	1	2	8	1
		10	0.41	0.05	0.11	0.38	0.05	8	1	2	8	1
	6	5	0.36	0.09	0.16	0.34	0.05	7	2	3	7	1
		10	0.34	0.11	0.17	0.33	0.05	7	2	3	7	1
2/3	2	5	0.45	0.05	0.05	0.40	0.05	9	1	1	8	1
		10	0.42	0.05	0.10	0.38	0.05	8	1	2	8	1
	6	5	0.40	0.05	0.12	0.38	0.05	8	1	2	8	1
		10	0.36	0.10	0.15	0.34	0.05	7	2	3	7	1

$$\rho = 0 \rightarrow \mathbf{N} = \mathbf{I}_K \rightarrow \text{same OD as in P. & Piepho (2024)}$$

Computation using OptimalDesign Package in R

Literature

Harman, R. and Filová, L. (2019). Package 'OptimalDesign'. https://cran.rproject.org/web/packages/OptimalDesign/index.html.

Kleinknecht, K., Möhring, J., Singh, K., Zaidi, P., Atlin, G., and Piepho, H.-P. (2013). Comparison of the performance of BLUE and BLUP for zoned indian maize data. *Crop Science*, 53, 1384-1391.

Prus, M. (2025). Computing optimal allocation of trials to subregions in crop-variety testing in case of correlated genotype effects. *Statistica Neerlandica*

Prus, M. and Piepho, H.-P. (2021). Optimizing the allocation of trials to sub-regions in multi-environment crop variety testing. *Journal of Agricultural, Biological and Environmental Statistics*.

Literature

Prus, M. and Piepho, H.-P. (2024). Optimizing the allocation of trials to sub-regions in crop variety testing with multiple years and locations. *Journal of Agricultural, Biological and Environmental Statistics*

Bodnar T. and Prus, M. (2026) Dimension reduction for optimal design problems with Kronecker-product structure: Application in crop variety testing. *Submitted manuscript*.

Thank you for your attention!

